

Bayesian Statistics as an Alternative for Analyzing Data and Testing Hypotheses

Benjamin Scheibehenne

GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT

http://scheibehenne.de

Standard Environmental Message

Descriptive Social Norm

44.1%

 $X^{2}(1, N = 433) = 3.72; p = .05$

Reuse:

Goldstein, Cialdini, & Griskevicius, 2008, Journal of Consumer Research

The Null Ritual

- Set up a statistical null hypothesis of "no mean difference" or "zero correlation." Do not specify any substantive alternative hypotheses.
- 2. Calculate a p-value.
- 3. If p<.05, refer to the result as "statistically significant" and interpret it as if you obtained evidence for the alternative hypothesis.

What is Wrong with this Approach?

- p-values do not quantify evidence for your null or alternative hypothesis
- With high enough sample size, you are guaranteed to get p<.05
- p-values depend on the intention of the researcher (identical data can yield different p values)
- p-values are not consistent: Little can be learned from non-significant results

When H₀ is True, p-Values are not Consistent

Alternative hypothesis is true

More data \rightarrow higher chance of identifying the true hypothesis

Null-Hypothesis is true

More data \rightarrow chance of identifying the true (null) hypothesis is constant (at 1- α)

Under H₀, p-Values are uniformly distributed

p-Values Depend on the Intention of the Experimenter

• Default assumption: *N* is fixed actually:
$$p = .053$$

 $X^{2}(1, N = 433) = 3.72; p = .05$

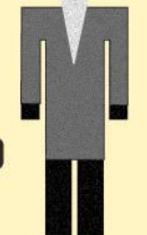
• What if the number of hotel guests is a random variable? $N_{control} \sim \mu = 211$ $\sigma = 30$ $N_{ex} \sim \mu = 222$ $\sigma = 30$

$$X^{2}(1, N = 433) = 3.72; p = .06$$

19TH CENTURY SCIENTIST

I MUST FIND THE EXPLANAITION FOR THIS PHENOMENON IN ORDER TO TRULY

UNDERSTAND NATURE...



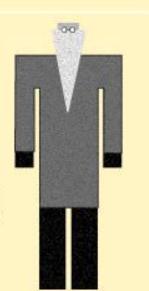
00

19TH CENTURY SCIENTIST

21ST CENTURY SCIENTIST

I MUST FIND THE EXPLANAITION FOR THIS PHENOMENON IN ORDER TO TRULY

UNDERSTAND NATURE...



I MUST GET THE RESULT THAT

FITS MY NARRATIVE

SO I CAN GET MY

PAPER INTO NATURE...

American Statistical Association Issues Warning

Statisticians issue warning over misuse of P values

Policy statement aims to halt missteps in the quest for certainty.

nature International weekly journal of science

"The widespread use of "statistical significance" (generally interpreted as " $p \le 0.05$ ") as a license for making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific process."

Misuse of the P value — a common test for judging the strength of scientific evidence — is contributing to the number of research findings that cannot be reproduced, the American Statistical Association (ASA) warns in a statement released today¹. The group has taken the unusual step of issuing principles to guide use of the P value, which it says cannot determine whether a hypothesis is true or whether results are important.

This is the first time that the 177-year-old ASA has made explicit recommendations on such a foundational matter in statistics, says executive director Ron Wasserstein. The society's members had become increasingly concerned that the *P* value was being misapplied in ways that cast doubt on statistics generally, he adds.

GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT

Message is not new...

"To report a significant result and reject the null in favor of an alternative hypothesis is meaningless [...]." (*Richard Feynman*)

"In the land of the blind, keep your eyes closed."

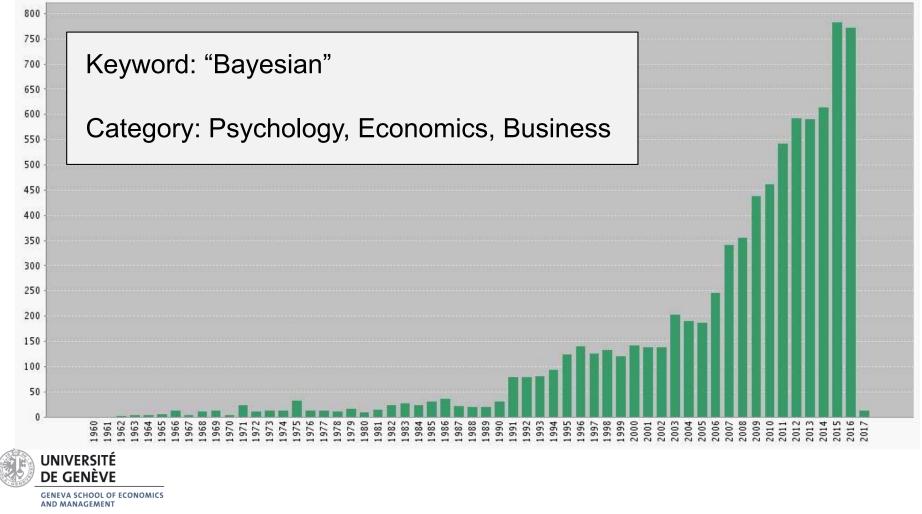
[proverb from Kurdistan]

Bayesian Approach Provides an Alternative

"Friends don't let friends compute p-values"

Bayesian Approach Increasingly Attractive

Articles in Web of Science



What Makes the Bayesian Approach Attractive?

New Results

- Evidence for Hypotheses (incl. H0)

Better Results

- More accurate estimates and predictions
- Intuitive interpretation

Compare different models and hypotheses

- Take model complexity into account

Broad application

- "One-stop shop"

What Makes the Bayesian Approach Attractive?

New Results

Evidence for Hypotheses (incl. H0)

Better Results

- More accurate estimates and predictions
- Intuitive interpretation

Compare different models and hypotheses

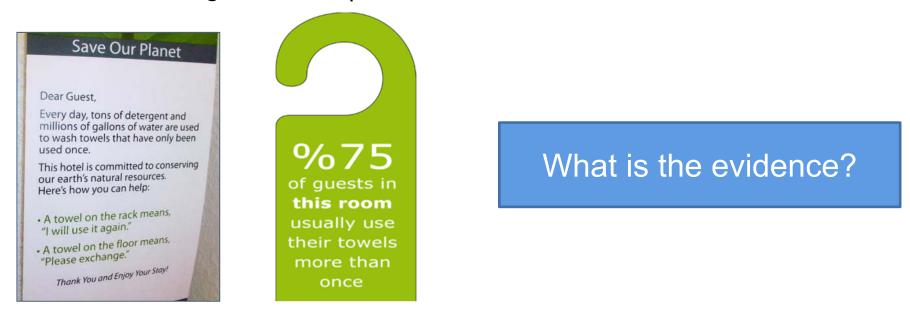
- Take model complexity into account

Broad application

- "One-stop shop"

Standard Message

Descriptive Social Norm

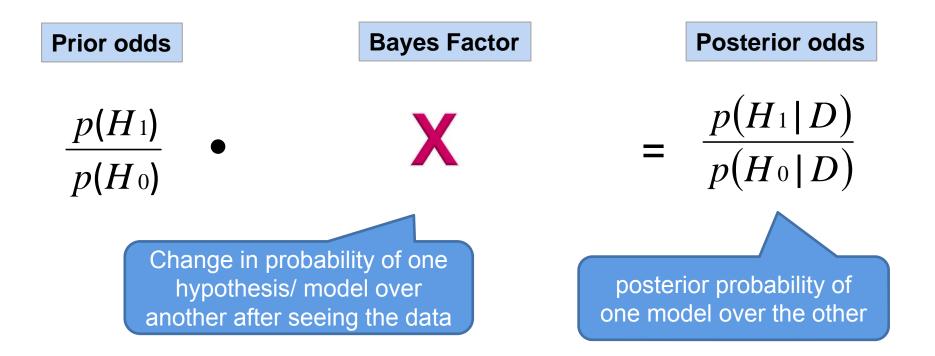


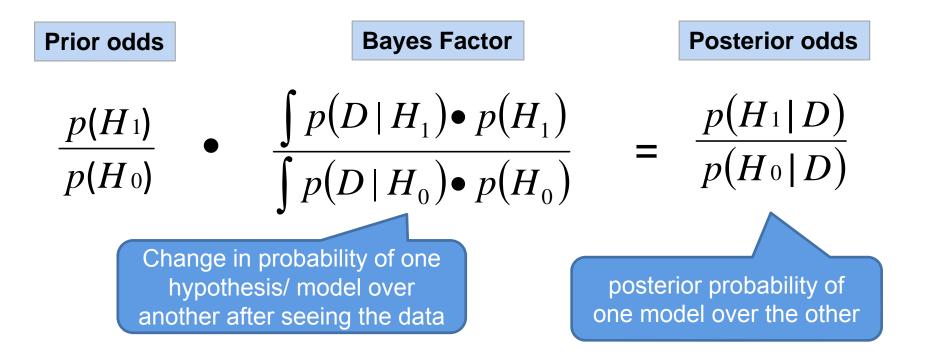
Ex1: 35.1% 44.1% N = 433 p = .05

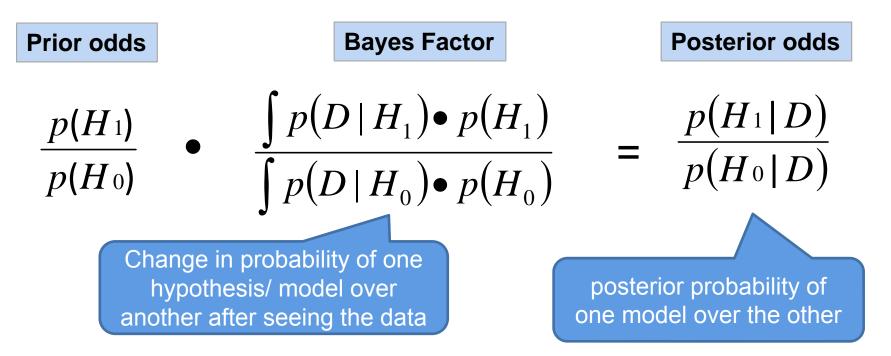
Ex2: 37.2% 44.5% N = 1,595 p = .03

Bayesian Hypothesis Test

- Suppose we have two hypotheses: H1 and H0
- Which hypothesis is better supported by the data?
- The model that makes the best prediction for the data!
- Ratio of predictive performance = **Bayes Factor**

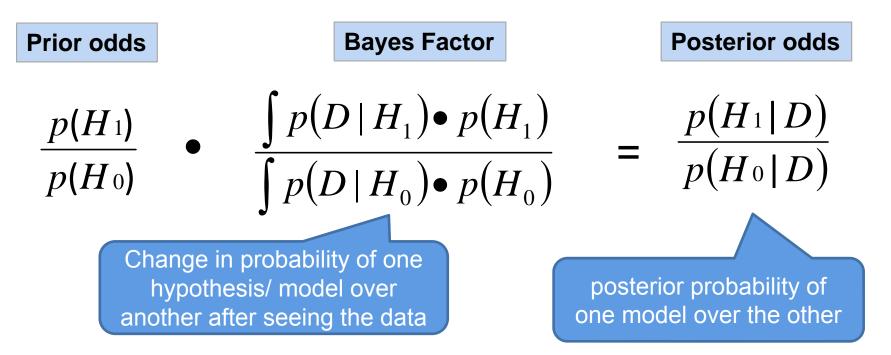






Simple Interpretation:

BF = 3: After seeing the data, H_1 became 3 times more probable than H_0



Simple Interpretation:

UNIVERSITÉ DE GENÈVE

AND MANAGEMENT

GENEVA SCHOOL OF ECONOMICS

Kass & Raftery, 1995, JASA

BF = 3: After seeing the data, H_1 became 3 times more probable than H_0

1 to 3	Anecdotal
3 to 10	Substantial
10 to 100	Strong
>100	Decisive

Advantages of Bayes Factors

- Quantifies evidence instead of forcing an all-or-none decision
- Easy to interpret
- All assumptions are explicit
- Able to distinguish between "data support H₀" and "data are not diagnostic"

Bayes Factor for Towel Data

Ex1	Reuse	Throw
Standard message	74	137
Social norm	98	124

Gunel & Dickey (1974) Biometrika

Bayes Factor for Towel Data

Assumptions:

- Sample size in each condition (row) is fixed
- Probability of reuse = π_{standard} , $\pi_{\text{social norm}}$
- Prior: Each value for π is equally probable a-priori
- H0: $\pi_{\text{standard}} = \pi_{\text{social norm}}$
- H1: $\pi_{\text{standard}} < \pi_{\text{social norm}}$

Ex1	Reuse	Throw
Standard message	74	137
Social norm	98	124

Independent multinomial distribution

Gunel & Dickey (1974) Biometrika

Bayes Factor for Towel Data

Assumptions:

- Sample size in each condition (row) is fixed
- Probability of reuse = π_{standard} , $\pi_{\text{social norm}}$
- Prior: Each value for π is equally probable a-priori
- H0: $\pi_{\text{standard}} = \pi_{\text{social norm}}$
- H1: $\pi_{\text{standard}} < \pi_{\text{social norm}}$

Result:

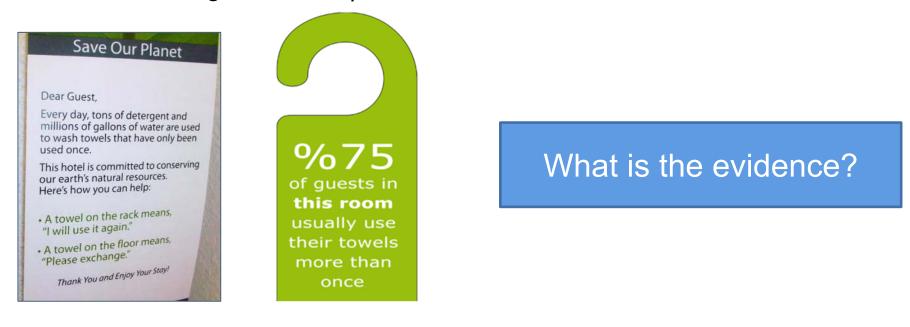
- BF = 1.46
- BF for undirected hypothesis ($\pi_{\text{standard}} \neq \pi_{\text{social norm}}$) = 0.75

Ex1	Reuse	Throw
Standard message	74	137
Social norm	98	124

Independent multinomial distribution

Standard Message

Descriptive Social Norm



Ex1:	35.1%	44.1%	N = 433	p = .05	BF = 1.46
Ex2:	37.2%	44.5%	N = 1,595	p = .03	BF = 2.03

Lots of failed replications...

Schultz et al. (2007) Social Influence

Mair & Bergin-Seers (2010) Tourism and Hospitality Research

all p's > .14

Bohner & Schlüter (2014) PloS ONE

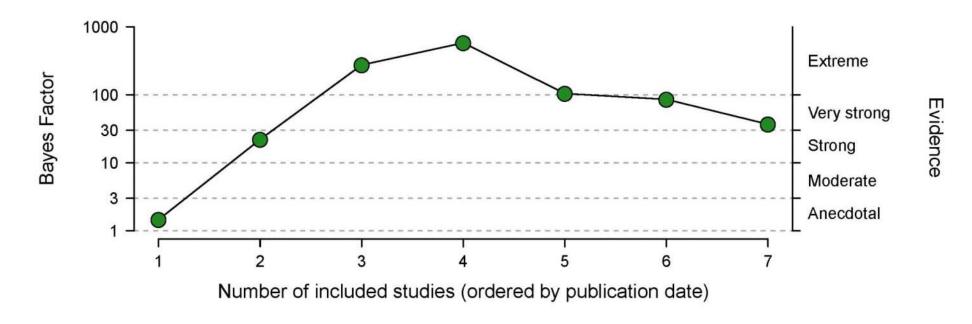
				Da	ata	
•	Postariar Lag Odda Patia	Bayes	control		social norm	
Source	Posterior Log Odds Ratio	Factor	reuse	throw	reuse	throw
Goldstein et al., Ex.1	└──● ──1	1.46	74	137	98	124
Goldstein et al., Ex.2	⊨− ●−4	2.03	103	174	587	731
Schulz et al., Ex.2	₽ <u>+</u> ⊕1	0.35	77	58	406	249
Schulz et al., Ex.3	P <u>i</u> -●1	0.58	82	105	278	277
Mair & Bergin-Seers, Ex.1	⊢	0.33	21	4	21	3
Bohner & Schlüter, Ex.1	⊢	0.06	123	24	472	104
Bohner & Schlüter, Ex.2		0.07	28	2	101	31
-3 -2	2 -1 0 1	ר 2				
	Log Odds Ratio					
UNIVERSITÉ DE GENÈVE GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT						

Scheibehenne, Jamil, & Wagenmakers (2016) Psychological Science

					Data			
Source Posterior Log Odds Ratio		Bayes Factor		throw	socia reuse			
Goldstein et al., Ex.1	⊢ I	1.46	74	137	98	124		
Goldstein et al., Ex.2	 1	2.03	103	174	587	731		
Schulz et al., Ex.2	⊢	0.35	77	58	406	249		
Schulz et al., Ex.3	i ∔_ _ i	0.58	82	105	278	277		
Mair & Bergin-Seers, Ex.1	—	0.33	21	4	21	3		
Bohner & Schlüter, Ex.1		0.06	123	24	472	104		
Bohner & Schlüter, Ex.2		0.07	28	2	101	31		
Total	₩	36.89	508	504	1963	1519		
-3	-2 -1 0 1							
UNIVERSITÉ DE GENÈVE		% increa		-: 6.	0%			
GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT								

Scheibehenne, Jamil, & Wagenmakers (2016) *Psychological Science*

- Cumulative evidence "as the data comes in"
- Can be updated in the future



UNIVERSITÉ DE GENÈVE

Scheibehenne, Jamil, & Wagenmakers (2016) Psychological Science

Repeated Testing is Allowed

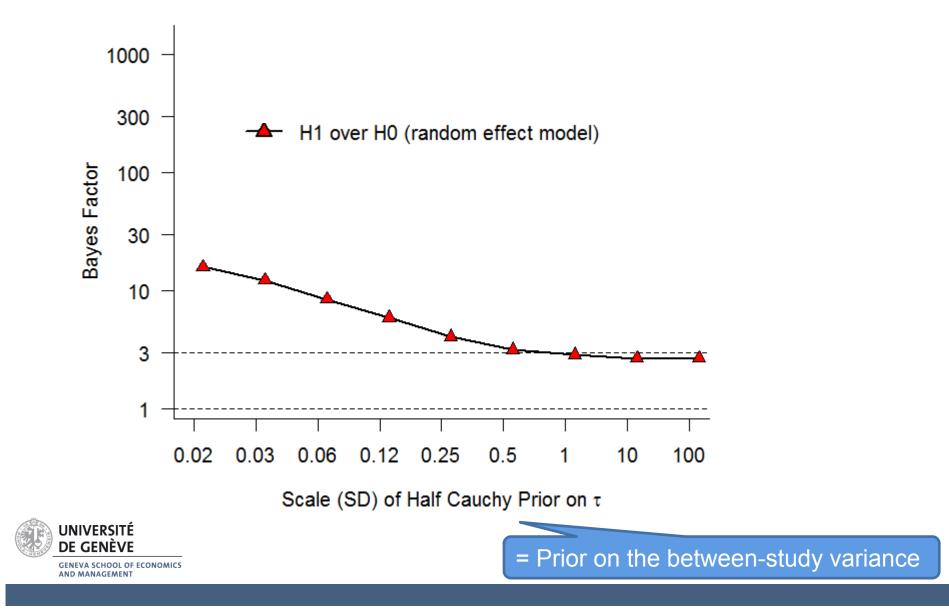
- Multiple tests in NHST = risk of false-positive findings
- In a Bayesian framework, optional stopping does not distort the results
- No correction for repeated testing required

"It follows that any significance test based on Bayes's theorem does not depend on the sequential stopping rule used [...]"

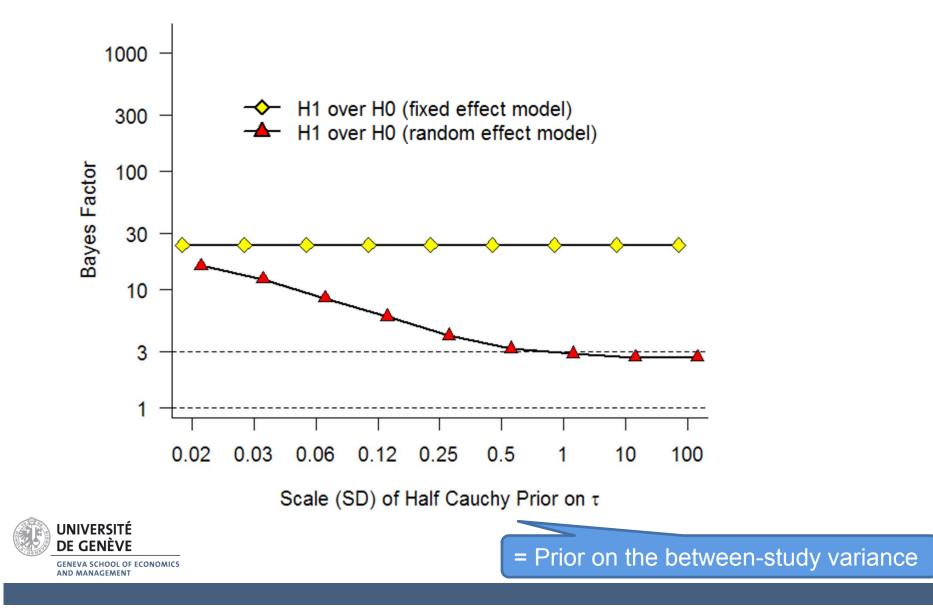
Dennis Lindley (1957)

Higgins et al. (2008) Statistics in Medicine

Would a Random-Effect Model be Better Suited?



Would a Random-Effect Model be Better Suited?



What Makes the Bayesian Approach Attractive?

New Results

- Evidence for Hypotheses (incl. H0)

Better Results

- More accurate estimates and predictions
- Intuitive interpretation

Compare different models and hypotheses

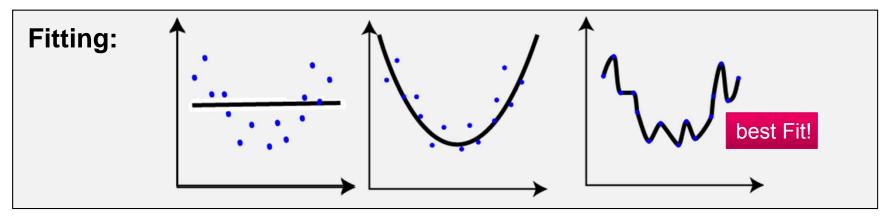
- Take model complexity into account

Broad application

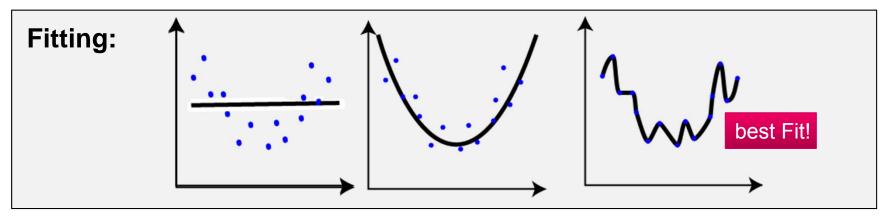
- "One-stop shop"

Andraszewicz, Scheibehenne, et al. (2015) Journal of Management

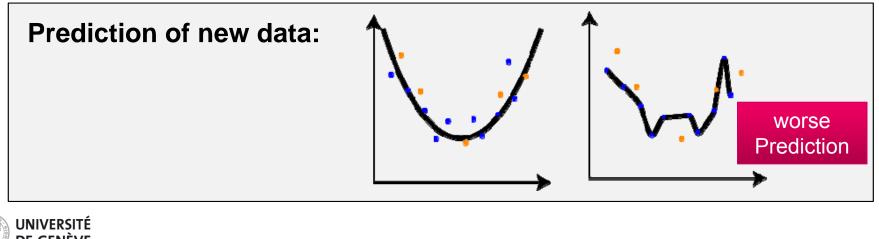
More complex models provide a better *description* of the data...



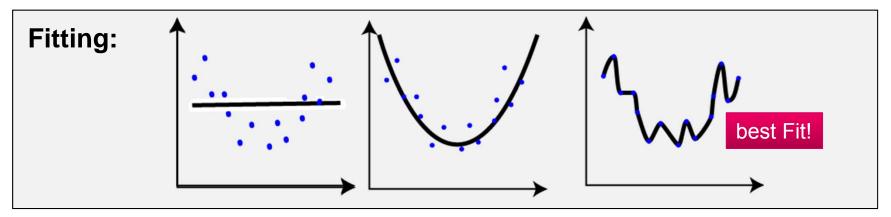
More complex models provide a better *description* of the data...



...but not necessarily a better *explanation*:



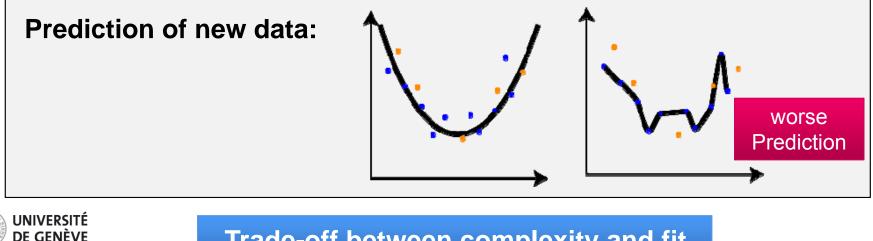
More complex models provide a better *description* of the data...



...but not necessarily a better *explanation*:

GENEVA SCHOOL OF ECONOMICS

AND MANAGEMENT



Trade-off between complexity and fit

Andraszewicz, Scheibehenne, et al. (2015) Journal of Management

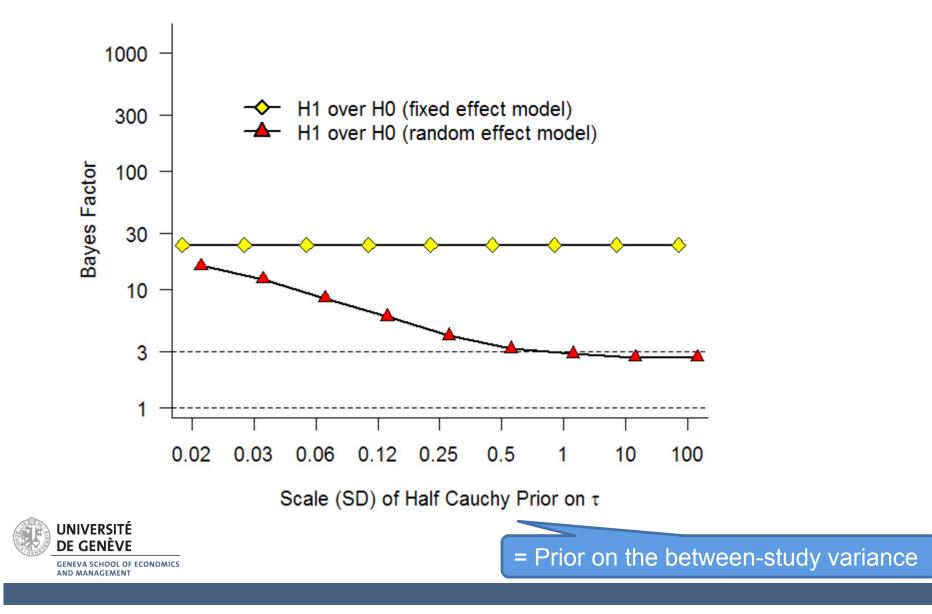
average probability of the observed data across all predictions the model makes

 $\int p(D|\theta_1, M_1) \cdot p(\theta_1, M_1)$

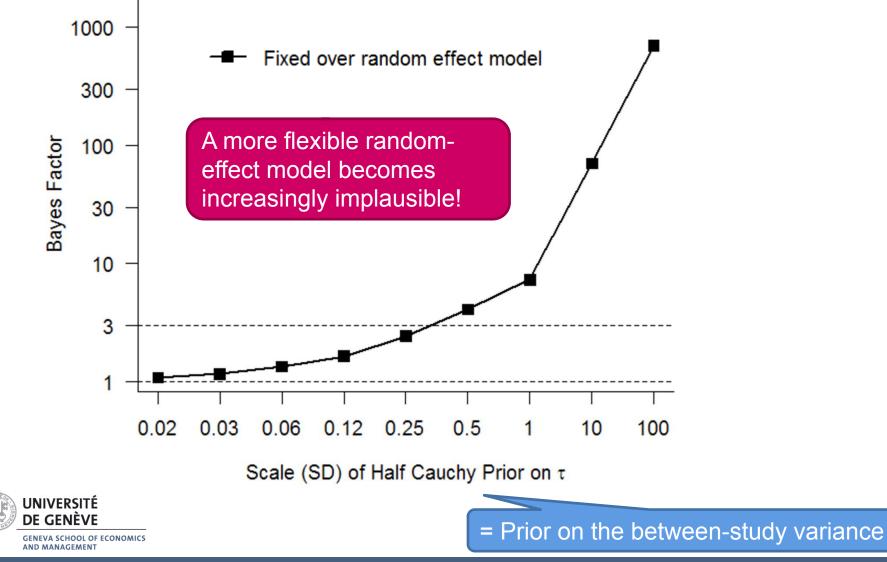
 $\int p(D|\theta_2, M_2) \cdot p(\theta_2, M_2)$

- Flexible models make many predictions
- If most of these predictions are wrong, this drives down the average probability

Would a Random-Effect Model be Better Suited?

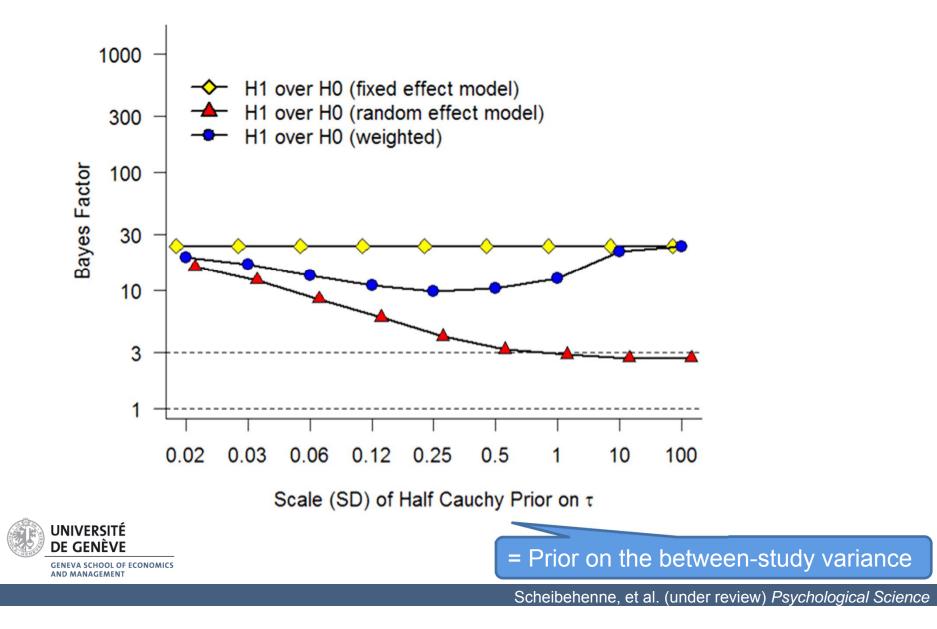


Would a Random-Effect Model be Better Suited?

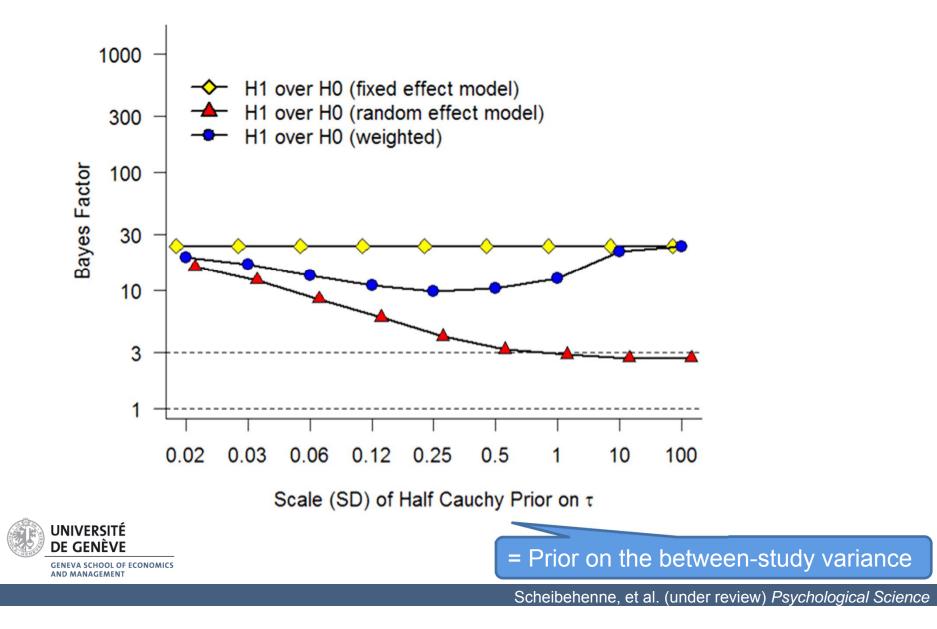


Scheibehenne, et al. (under review) Psychological Science

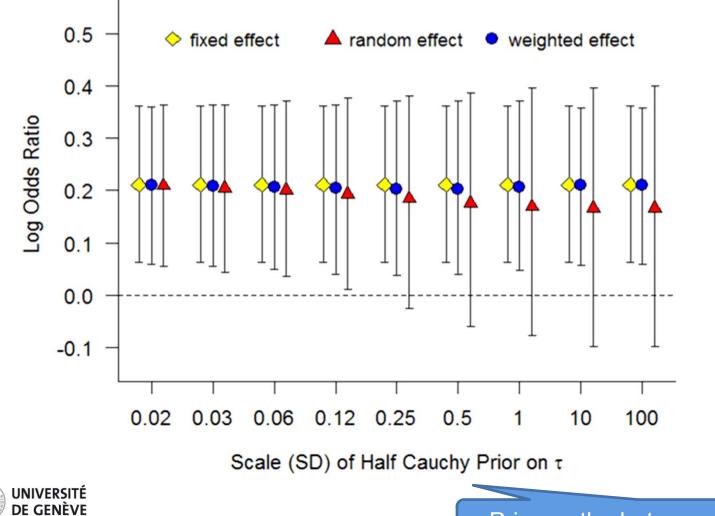
Resolution: Bayesian Model Averaging



Resolution: Bayesian Model Averaging



Resolution: Bayesian Model Averaging



GENEVA SCHOOL OF ECONOMICS

AND MANAGEMENT

= Prior on the between-study variance

Scheibehenne, et al. (under review) Psychological Science

What Makes the Bayesian Approach Attractive?

New Results

- Evidence for Hypotheses (incl. H0)

Better Results

- More accurate estimates and predictions
- Intuitive interpretation

Compare different models and hypotheses

- Take model complexity into account

Broad application

"One-stop shop"

Broad Application

- Well suited for estimating more complex models
- Lends itself to hierarchical designs

Advantages of Bayesian Approach

- Probabilities for hypotheses
- Able to distinguish b "data are not diagno
- Easy to interpret
- Can be updated as
- Possibility to include
- All assumptions are
- Model comparison:
- Well-suited for big d
- High "street credibility

Bayesian Statistics as an Alternative for Analyzing Data and Testing Hypotheses

Benjamin Scheibehenne

GENEVA SCHOOL OF ECONOMICS AND MANAGEMENT

http://scheibehenne.de