Robust regression in R

Eva Cantoni

Research Center for Statistics and Geneva School of Economics and Management, University of Geneva, Switzerland

April 4th, 2017

- Robust statistics philosopy
- 2 Robust regression
- R ressources
- 4 Examples
- Bibliography

Against what is robust statistics robust?

Robust Statistics aims at producing consistent and possibly efficient estimators and test statistics with stable level when the model is *slightly* misspecified.

Model misspecification encompasses a relatively large set of possibilities, and robust statistics cannot deal with all types of model misspecifications.

By "slight model misspecification", we suppose that the data generating process lies in a *neighborhood* of the true (postulated) model, the one that is considered as "useful" for the problem under investigation.

Against what is robust statistics robust?

This neighborhood is formalized as

$$F_{\varepsilon} = (1 - \varepsilon)F_{\theta} + \varepsilon G, \tag{1}$$

- F_{θ} is the postulated model,
- θ is a set of parameters of interest,
- G is an arbitrary distribution and
- $0 \le \varepsilon \le 1$ captures "the amount of model misspecification"

Against what is robust statistics robust?

Inference	Classical				
G	$0 << \varepsilon < 1$	$0<\varepsilon<<1$	$\varepsilon = 0$		
arbitrary	?	?	F_{θ}		
$G=\Delta_z$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$F_{m{ heta}}$		
$G = F_{(oldsymbol{ heta},oldsymbol{ heta}')}$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$F_{m{ heta}}$		
G such that $F_{\varepsilon} = F_{(\theta, \theta')}$	$F_{(oldsymbol{ heta},oldsymbol{ heta}')}$	$F_{(oldsymbol{ heta},oldsymbol{ heta}')}$	$F_{m{ heta}}$		
	Robust				
arbitrary	?	F_{θ}	F_{θ}		
$G = \Delta_z$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$F_{m{ heta}}$	$F_{m{ heta}}$		
$G = F_{(oldsymbol{ heta},oldsymbol{ heta}')}$	$ extcolor{black}{ extcolor{black}{\mathcal{F}_{arepsilon}}}$	$F_{m{ heta}}$	$F_{m{ heta}}$		
G such that $F_{\varepsilon} = F_{(\theta,\theta')}$	$F_{(\boldsymbol{ heta}, oldsymbol{ heta}')}$	F_{θ}	F_{θ}		

Table: Models at which inference can be at best done.

Robustness measures

Robust estimators protect against:

- bias under contamination
- breakdown point

They imply a trade-off between efficiency and robustness!

Linear model and classical estimation

For i = 1, ..., n consider

$$y_i = x_i^T \beta + \epsilon_i,$$

with $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$.

The maximum likelihood estimator $\hat{\beta}_{ML}$ minimizes

$$\sum_{i=1}^{n} \left(\frac{y_i - x_i^T \hat{\beta}_{ML}}{\sigma} \right)^2 = \sum_{i=1}^{n} r_i^2,$$

or, alternatively, solves

$$\sum_{i=1}^{n} \left(\frac{y_i - x_i^T \hat{\beta}_{ML}}{\sigma} \right) x_i = \sum_{i=1}^{n} r_i x_i = 0.$$

Outliers....

Classification des points aberrants

Robustness vs diagnostic

Masking.....

ML residuals

Robustness vs diagnostic

Masking.....

Data and ML fit

M and GM-estimation

The M-estimator $\hat{\beta}_M$ solves

$$\sum_{i=1}^n \psi_c \left(\frac{y_i - x_i^T \hat{\beta}_M}{\sigma} \right) x_i = \sum_{i=1}^n \psi_c(r_i) x_i = \sum_{i=1}^n \tilde{w}_c(r_i) \ r_i x_i = 0,$$

where $\tilde{w}_c(r_i) = \psi_c(r_i)/r_i$, or minimizes

$$\sum_{i=1}^{n} \rho_{c} \left(\frac{y_{i} - x_{i}^{T} \hat{\beta}_{M}}{\sigma} \right).$$

The Mallows GM-estimator \hat{eta}_{GM} is an alternative that solves

$$\sum_{i=1}^n \psi_c \left(\frac{y_i - x_i^T \hat{\beta}_{GM}}{\sigma} \right) w(x_i) x_i = \sum_{i=1}^n \tilde{w}(r_i) w(x_i) r_i x_i = 0.$$

ψ_c and ρ_c functions

Comparison

S-estimation

The S-estimator $\hat{\beta}_S$ is an alternative that minimizes

$$\sum_{i=1}^{n} \rho_{c} \left(\frac{y_{i} - x_{i}^{T} \hat{\beta}_{S}}{s} \right),$$

where s is a scale M-estimator that solves

$$\frac{1}{n}\sum_{i=1}^{n}\rho_{c}^{(1)}\left(\frac{y_{i}-x_{i}^{T}\beta}{s}\right)=b.$$

→ロト→□ → ← 差 ト → 差 → りへで

MM-estimation

The MM-estimator is a two-step estimator constructed as follow:

- 1. Let s_n be the scale estimate from an initial S-estimator.
- 2. With $\rho_c^{(2)}(\cdot) \leq \rho_c^{(1)}(\cdot)$, the MM-estimator $\hat{\beta}_{MM}$ minimizes

$$\sum_{i=1}^{n} \rho_c^{(2)} \left(\frac{y_i - x_i^T \hat{\beta}_{MM}}{s_n} \right).$$

Comparison

Robust GLM (GM-estimator)

For the GLM model (e.g. logistic, Poisson)

$$g(\mu_i) = x_i^T \beta$$

where $E(Y_i) = \mu_i$, $Var(Y_i) = v(\mu_i)$ and $r_i = \frac{(y_i - \mu_i)}{\sqrt{\phi v_{\mu_i}}}$, the robust estimator is defined by

$$\sum_{i=1}^{n} \left[\frac{\psi_c(r_i)w(x_i)}{\sqrt{\phi v_{\mu_i}}} \mu'_i - a(\beta) \right] = 0, \tag{2}$$

where $\mu_i' = \partial \mu_i/\partial \beta = \partial \mu_i/\partial \eta_i \ \mathbf{x}_i$ and $a(\beta) = \frac{1}{n} \sum_{i=1}^n E[\psi(r_i;c)] w(\mathbf{x}_i)/\sqrt{\phi v_{\mu_i}} \ \mu_i'$. The constant $a(\beta)$ is a correction term to ensure Fisher consistency.

R functions for robust linear regression

(G)M-estimation

MASS: rlm() with method=''M'' (Huber, Tukey, Hampel)
 Choice for the scale estimator: MAD, Huber Proposal 2

S-estimation

- robust: lmRob with estim='', Initial''
- robustbase: lmrob.S

MM-estimation

- MASS: rlm() with method='','MM''
- robust: lmRob (with estim='', Final'', default)
- robustbase: lmrob()

R functions for other models

- robustbase: glmrob GM-estimation, Huber (include Gaussian)
- Negative binomial model: glmrob.nb from https://github.com/williamaeberhard/
- From our book webpage: http://www.unige.ch/gsem/rcs/members2/profs/ eva-cantoni/books/ robust-methods-in-biostatistics/

Dataset coleman from package robustbase.

A data frame with 20 observations on the following 6 variables.

- salaryP: staff salaries per pupil
- fatherWc: percent of white-collar fathers
- sstatus: socioeconomic status composite deviation: means for family size, family intactness, father's education, mother's education, and home items
- teacherSc: mean teacher's verbal test score
- motherLev: mean mother's educational level, one unit is equal to two school years
- Y: verbal mean test score (y, all sixth graders)


```
> summary (m. lm)
Call:
Im(formula = Y ~ ... data = coleman)
Residuals:
    Min
             1Q Median
                                   Max
                            3Q
-3 9497 -0 6174 0 0623
                        0 7343
                                 5 0018
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 19.94857
                      13.62755
                                 1.464
                                         0.1653
salaryP
                      1.23340
                                -1.454
                                         0.1680
            -1.79333
fatherWc
           0.04360
                       0.05326 0.819
                                         0.4267
sstatus
             0.55576
                       0.09296 5.979 3.38e-05 ***
teacherSc 1.11017
                     0.43377 2.559
                                        0.0227 *
motherLev
            -1.81092
                       2.02739 - 0.893
                                        0.3868
```

Signif. codes: 0 ,Äò***,Äô 0.001 ,Äò**,Äô 0.01 ,Äò*,Äô 0.05 ,Äò.,Äô 0.1 ,Äò ,Äô 1

Residual standard error: 2.074 on 14 degrees of freedom Multiple R-squared: 0.9063, Adjusted R-squared: 0.8728 F-statistic: 27.08 on 5 and 14 DF, p-value: 9.927e-07

```
> require(robustbase)
> summary(m.lmrob, setting = "KS2011")
Call:
Imrob(formula = Y ~ ., data = coleman)
\longrightarrow method = "MM"
Residuals:
     Min
              10
                   Median
                                3Q
                                        Max
-4.16181 - 0.39226 0.01611
                           0.55619 7.22766
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 30.50232
                       6.71260 4.544 0.000459 ***
salarvP
            -1.66615
                       0.43129 - 3.863 \ 0.001722 **
fatherWc 0.08425
                       0.01467 5.741 5.10e-05 ***
sstatus 0.66774 0.03385 19.726 1.30e-11 ***
teacherSc 1.16778 0.10983 10.632 4.35e-08 ***
motherLev -4.13657
                                -4.492 0.000507 ***
                       0.92084
Signif. codes: 0 ,Äò***,Äô 0.001 ,Äò**,Äô 0.01 ,Äò*,Äô 0.05 ,Äò,,Äô 0.1 ,Äò ,Äô 1
Robust residual standard error: 1.134
Multiple R-squared: 0.9814, Adjusted R-squared: 0.9747
Convergence in 11 IRWLS iterations
Robustness weights:
 observation 18 is an outlier with |weight| = 0 ( < 0.005);
 The remaining 19 ones are summarized as
   Min. 1st Qu. Median
                          Mean 3rd Qu.
                                          Max.
 0.1491 0.9412 0.9847
                        0.9279 0.9947
                                        0.9982
                                                     4□ > 4同 > 4 = > 4 = > ■ 900
```

Ctn'd:

```
Algorithmic parameters:
       tuning.chi
                                     tuning . psi
                                                         refine.tol
                                                                                rel.tol
                          bb
        1.548e + 00
                            5.000e-01
                                               4.685e+00
                                                                  1.000e-07
                                                                                      1.000e-
                         eps.outlier
                                                    eps.x warn.limit.reject warn.limit.meanr
        solve.tol
        1.000e - 07
                            5.000e - 03
                                               1.569e-10
                                                                   5.000e-01
                                                                                      5.000e-
     nResample
                        max.it
                                                       k.fast.s
                                                                                    maxit.scal
                                       best.r.s
                                                                          k . max
           500
                           50
                                            2
                                                                          200
200
     trace.lev
                                    compute.rd fast.s.large.n
                           mts
                           1000
                                                           2000
             0
                                  subsampling
                   psi
                                                                   cov compute.outlier.stats
           "bisquare"
                                "nonsingular"
                                                        ".vcov.avar1"
                                                                                    "SM"
seed : int(0)
```

Robustness weights


```
> summary(m.rlm)
Call: rlm(formula = Y ~ ... data = coleman)
Residuals:
    Min
            1Q Median
                            3Q
                                  Max
-4.2059 -0.3886 -0.1092 0.4231
                               6.7054
Coefficients:
           Value
                   Std. Error t value
(Intercept) 27.3497 7.6808
                             3.5608
salaryP
           -1.6207
                   0.6952
                          -2.3314
fatherWc
           0.0752
                   0.0300
                             2.5045
                   0.0524 12.2182
sstatus
            0.6401
         1.1557
teacherSc
                   0.2445
                             4.7271
motherLev
         -3.5195
                   1.1427
                              -3.0801
```

Residual standard error: 0.7461 on 14 degrees of freedom

UK study on the decision of pregnant women to breastfeed. 135 expecting mothers asked on their feeding choice (breast= 1 if breastfeeding, try to breastfeed and mixed brest- and bottle-feeding, =0 if exclusive bottle-feeding).

Covariates: advancement of the pregnancy (pregnancy, end or beginning), how mothers fed as babies (howfed, some breastfeeding or only bottle-feeding), how mother's friend fed their babies (howfedfriends, some breastfeeding or only bottle-feeding), if had a partner (partner, no or yes), age (age), age at which left full time education (educat), ethnic group (ethnic, white or non white) and if ever smoked (smokebf, no or yes) or if stopped smoking (smokenow, no or yes). The first listed level of each factor is used as the reference (coded 0).

The sample characteristics are as follow:

out of the 135 observations, 99 were from mothers that have decided at least to try to breastfeed, 54 mothers were at the beginning of their pregnancy, 77 were themselves breastfed as baby, 85 of the mother's friend had breastfed their babies, 114 mothers had a partner, median age was 28.17 (with minimum equal 17 and maximum equal 40), median age at the end of education was 17 (minimum=14, maximum=38), 77 mothers were white and 32 mothers were smoking during the pregnancy, whereas 51 had smoked before.

 $breast_i \sim Bernoulli(\mu_i)$, so that $E(breast_i) = \mu_i$ and $Var(breast_i) = \mu_i(1 - \mu_i)$ (Binomial family).

Use the logit link.

$$\begin{split} & \mathsf{logit}(E(\mathtt{breast})) = \mathsf{logit}(P(\mathtt{breast})) = \\ & = \beta_0 + \beta_1 \mathsf{pregnancy} + \beta_2 \mathsf{howfed} + \beta_3 \mathsf{howfedfr} \\ & + \beta_4 \mathsf{partner} + \beta_5 \mathsf{ethnic} + \beta_6 \mathsf{smokebf} \\ & + \beta_7 \mathsf{smokenow} + \beta_8 \mathsf{age} + \beta_9 \mathsf{educat}, \end{split}$$

where $logit(\mu_i) = log(\frac{\mu_i}{1-\mu_i})$, with $\mu_i/(1-\mu_i)$ being the odds of a success, and $\mu_i = P(breast)$ is the probability of at least try to breastfeed.

- > require (robustbase)
- > breast.glmrobWx=glmrob(decwhat"howfedfr+ethnic+educat+age+grp+howfed+partner+smokenow+smokebf,family=binomial,weights.on.x="hat",tcc=1.5,data=breast)
- > summary(breast.glmrobWx)

Call: glmrob(formula = decwhat ~ howfedfr + ethnic + educat + age + grp + howfed + partner + smokenow + smokebf, family = binomial, data = breast, weights.on.x = "hat", tcc = 1.5)

Estimate Ctd Error - value Dr(> | - |)

Coefficients:

	Estimate	Sta. Error	z varue	Pr(> 2)	
(Intercept)	-7.77423	3.35952	-2.314	0.02066	*
howfedfrBreast	1.49177	0.68777	2.169	0.03008	*
ethnicNon-white	2.68758	1.11582	2.409	0.01601	*
educat	0.37372	0.18486	2.022	0.04321	*
age	0.03116	0.05955	0.523	0.60082	
grpBeginning	-0.81318	0.69269	-1.174	0.24042	
howfedBreast	0.52823	0.70456	0.750	0.45342	
partnerPartner	0.78295	0.81448	0.961	0.33641	
smokenowYes	-3.44560	1.12137	-3.073	0.00212	**
smokebfYes	1.50733	1.09900	1.372	0.17020	

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05. 0.1 1 Robustness weights w.r * w.x:

Robustness weights w.r * w.x:

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04103 0.82460 0.86500 0.82890 0.89400 0.93790

Number of observations: 135

Fitted by method Mgle (in 12 iterations)

(Dispersion parameter for binomial family taken to be 1)

Ctn'd:

```
No deviance values available Algorithmic parameters: acc tcc 0.0001 1.5000 maxit 50 test.acc "coef"
```

Robustness weights

Mailing list and conferences

Dedicated mailing list: r-sig-robust@r-project.org

ICORS 2017 in Wollongong, Australia:

ICORS 2016 in Geneva:

References

- [1] Jean-Jacques Droesbeke, Gilbert Saporta, and Christine Thomas-Agnan. *Méthodes robustes en statistique*. Editions TECHNIP, 2015.
- [2] Frank R. Hampel, Elvezio M. Ronchetti, Peter J. Rousseeuw, and Werner A. Stahel. *Robust Statistics: The Approach Based on Influence Functions.* Wiley, New York, 1986.
- [3] S. Heritier, E. Cantoni, S. Copt, and M.-P. Victoria-Feser. *Robust Methods in Biostatistics*. Wiley-Interscience, 2009.
- [4] Peter J. Huber. Robust Statistics. Wiley, New York, 1981.
- [5] Peter J. Huber and Elvezio M. Ronchetti. *Robust Statistics*. Wiley, New York, 2009. Second Edition.
- [6] R.A. Maronna, R.D. Martin, and V.J. Yohai. *Robust statistics*. Wiley New York, 2006.

